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We will examine the discharge of laminar jets of fluids which are immiscible with the 
surrounding medium. It is assumed that there is a smooth interface between the discharge 

fluid and the surrounding fluid. Both fluids are assumed to be incompressible. Flow in the jet 
and in the external fluid is examined in a boundary-layer approximation. A problem formulated 
in the same manner was solved earlier by means of approximate methods: by the integral method 
in [i-4] and by an asymptotic method based on an expansion in powers of 1/x in [5-7]. 

Here, for plane and fan-shaped free and semi-infinite jets, we indicate the class of 
exact solutions corresponding to the case when the ratio of the absolute viscosities of the 
fluids is inversely proportional to the ratio of their densities. This class of solutions 
is extended to the case of slightly twisted fan-shaped jets. 

i. Motion in the discharged and external fluids is described by the equations in the 
boundary-layer approximation (the quantities pertaining to the discharged fluid are designated 
by the subscript i, while those pertaining to the external fluid have the subscript 2): 

ui~ul/az + v~au~/ay = ~O~ui/ay ~, ( 1 . 1 )  
o 

a---E (xSui) + ~ (XJvO = 0 (i = 1, 2). 

Here and below, j = 0 for plane jets and j = i for fan-shaped jets. 

The velocity and stress continuity conditions at the interface y = y,(x) in the same 
approximation are represented in the following form (due to the symmetry of the problem, we 
will examine only the upper half-plane): 

U i = U2, ~iaUl/~y = ~2au~/ay at y = y ,  (~. ( i. 2) 

The conditions on the jet axis and at infinity: 

v i = 0, @ui/@y = 0 ~(free jet) at y = 0,! (1.3) 

Pi = 0, u I = 0 (semi-infinite jet) at y = O; 

u2-+0 at y--~oo. (1.4) 

The condition expressing the mass conservation law 
~,(x) 

o uidy = q' q----2p-~ 
" 0 

(Q i s  a c o n s t a n t  e q u a l  t o  t h e  f l o w  r a t e  o f  t h e  f l u i d  i n  
needed to obtain a nontrivial solution to the equations 
variables used to obtain the solution. 

Let us change over to von Mises variables [8]: ~ = x, q = ~(x, y), where ~ is the stream 
function, determined by the relations xJu = ~/~y, xJv = -~/~x. Instead of (1.1)-(1.5), we 
have an equivalent system of equalities in the variables ~, n: 

for the discharge fluid: 

(i.5) 

the jet). The integral relations 
are written below in the von Mises 

au~ .:~,~ a /. au~. (1.6) 

U I = U2, ~liaUi/~ ~ = ~28U2/@I] "at ~] = q; (i. 7) 

~Ui/@~ ] = 0 (free jet) at q = O, (1.8) 
u i = 0 (semi-infinite jet) at q -0. 
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Here, q is the constant value of the stream function corresponding to the interface of the 

fluids. It is determined in (1.5). 

To convert the solution to the original variables, we use the relations 

y = x-~ y dz 
u~ (x, z) a t  ~1 ~ q,  

0 

y = x-~ u l (x, z---------~ -~- u 2 (x, z) at ~] > q. 
q 

(1.9) 

2. We will examine free jets. The integral condition ensuring the existence of a non- 
trivial solution and expressing the momentum conservation law is obtained by multiplying 
(1.6) by Pi and integrating over n: from 0 to q with i = i and from q to ~ with i = 2 [N~(~) 
is the value of the stream function corresponding to y + ~. It is found from (1.4)]. After 
integrating by parts, with allowance for conditions (1.7), we arrive at the relation 

(2.1) pl ~ uld~ + p~ ~ u~d~ = T 
o q 

( J  i s  a c o n s t a n t  e q u a l  t o  t h e  momentum of  t h e  j e t ) .  

We will seek to find a similarity solution of Eqs. (1.6) in the form 

ui = ~m /i(CPi) (q)i = (!"] "-~ bi)/~n). ( 2 . 2 )  

I n s e r t i n g  ( 2 . 2 )  i n t o  ( 1 . 6 ) ,  we f i n d  

m/~ - -  nq~J~ = v~ (H',)" (m = 2n ~ (2] + i)). ( 2 . 3 )  

For  a f r e e  j e t  n = -m; t h e  s o l u t i o n s  o f  Eqs.  ( 2 . 3 )  and t h e  e x p r e s s i o n s  f o r  u i have  t h e  form 

/ i  = Ci - -  a (6v0  -1  ~2 (a = 2] + 1), ui  = C ~  - ~ / 3  - -  a (6v0  - 1  ~-~ (~ + b02. ( 2 . 4 )  

The c o n s t a n t s  C1, C2, b l ,  and b 2 a r e  d e t e r m i n e d  f rom c o n d i t i o n s  ( 1 . 7 ) ,  ( 1 . 8 ) ,  and ( 2 . 1 ) .  I t  
follows from (1.8) that b I = 0, while it follows from (1.7) that 

C~ = C~, q2/v 1 = (q + b2)2/v~; ( 2 . 5 )  

~q/ 'vl  = ~h(q q- b~)/'%. ( 2 . 6 )  

C o n d i t i o n s  ( 2 . 5 )  and ( 2 . 6 )  a r e  c o m p a t i b l e  i f  t h e  f o l l o w i n g  r e l a t i o n  i s  s a t i s f i e d  

2 2 
~s = V2/Vl or ~/2,/~I = P/92. ( 2 . 7 )  

With s a t i s f a c t i o n  o f  ( 2 . 7 ) ,  t h e  c o n s t a n t  b z i s  d e t e r m i n e d  f rom ( 2 . 5 )  and t h e  e x p r e s s i o n s  
for u i are represented in the following form (we will henceforth omit the subscript for C) 

ul = C~-cz/3 - -  cz(6vl)-l~-aq 2, U2 = C~ -~/3 - -  ~(6v2) -1~-~[~] ~- q(Z - -  t)] 2 (~ = ~2/~1). ( 2 . 8 )  

To c a l c u l a t e  t h e  c o n s t a n t  C, we t a k e  i n t e g r a l  c o n d i t i o n  ( 2 . 1 ) ,  where  t h e  f u n c t i o n  n~ (~ ) ,  
d e t e r m i n e d  f rom ( 1 . 4 ) ,  ( 2 . 8 ) ,  has  t h e  form q~ = q(1 - X) + ( f ~ ) ~ a / 3 .  Us ing  t h i s  e x p r e s -  
s i o n  in  ( 2 . 1 )  and e m p l o y i n g  Eqs.  ( 2 . 8 )  and Eq. ( 2 . 7 ) ,  a f t e r  s e v e r a l  t r a n s f o r m a t i o n s  we o b t a i n  

C = (3aJ~/32%9~) al~. ( 2 . 9  ) 

E q u a t i o n s  ( 2 . 8 )  and ( 2 . 9 )  g i v e  t h e  s o l u t i o n  o f  t h e  p rob lem in  von Mises  v a r i a b l e s .  To change  
o v e r  t o  t h e  v a r i a b l e s  x and y ,  we u se  ( 1 . 9 ) .  

Assuming t h a t  ~ = q,  we u se  t h e  f i r s t  e q u a t i o n  o f  ( 1 . 9 )  t o  o b t a i n  an e x p r e s s i o n  f o r  
the half-width of the jet: 

k x(~+~)/3lnkX(Z/3+..~q, k =  V ~ 6 ~  ~. (2.10) 
y ,  ( x )  = , ~  ~ x  ~'/3 _ q . 

We find y(x, n) from the first formula of (2.9) for the discharged jet (y<y.(x)) and, 
inverting the resulting expression, we obtain 

exp (~) -- i / 2--C-~'a Y kx  al8 ~h 
(2.11) 
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The expression for u1(x, y) is found by inserting (2.11) into (2.8) or by using the relation 
xJu = 8~/8y: 

ul = 4Cx-e/aexp(~)(exp(~) @ 1)-3. ( 2 . 1 2 )  

Similarly, by using the second formulas of (1.9) and (2.8), we obtain the following at 
y > y , ( x )  

V 6C~ 3 x~Z/3 �9 (x) exp (~/%) --  1 
TI2 = a �9 (x) exp (~/~) -t- I -4- q (1 -- ~,),, 

0 (x) exp (U~,)' q;) (x) = fkx~/3 -I- q'~ (~'-,>1~ ( 2 . 1 3 )  

[(D (x) exp (~/l) -~ t l " '  " q ) \ k - ~  7~ -- " 

The expressions for the second component of velocity can be found from (2.11), (2.13) 
by means of the relation v = -x-JSn/Sx. Equations (2.9)-(2.13) give the solution of problem 
(1.1)-(1.5) with condition (2.7). This can be proven by direct substitution. The asymptotic 
formula for the solution at x >> i can be compared with the results in [5] for the case j = 0 
(plane jet); the respective expressions agree, given condition (2.7). 

3. We will examine semi-infinite jets. We obtain the integral condition which ensures 
a nontrivial solution by assuming that Eq. (2.7) is satisfied. We multiply (1.6), with i = i, 
by p~. With i = 2, we multiply (1.6) by p~(N + b 2) [b 2 is found from Eq. (2.6)]. We then 
integrate within the respective limits and add the resulting equalities. With allowance for 
(1.7), after we take the relations P~I = P2 2, ~q= ~1(q -~ b3) - which follow from (2.6), (2.7) - 
and we integrate them by parts as well, we have the integral condition in the form 

q 'tloo(~) 

y ~ E (E is aconstant). (3.1) P~ nutdn + P~ (n -t- b3) u2d~l = y 
o q 

Similarity solution (2.2) is determined by Eq. (2.3) with the relation which imposes 
condition (3.1): 2n = -m, from which m = -~/2, n = a/4. The solution of Eq. (2.3): 

C _i/3 (6vd-lep~. ) r  itPi - - 0 ~  

The conditions at the interface (1.7) lead to the relations [b I ffi 0 due to (1.8)] C1q I/2= 
C3(q 3c b2) I/z, q3/vl ----(q -~- b2)2/~;2, ~iC1q -i/2 = ~3C3(q -~ b3),u3, ~iq/~;i = ~s(q ~- b3)/~3, which are compatible 
with (2.7). The expressions for ul, u 2 have the form 

ul = C2 l/'%'g-5/saTI1/2 -- a(6vl)- i~-~n3,  

u3 = c3~ -~z'~< (n + b3) lz3 - -  <z (6~,2) - ~  V ~ (n + 2 ) ,  b3 = q b 2 ( ~ - -  l ) ,  ( 3 . 2 )  

C 3 = (lOE/3p~) 3/' (a/6v3) 5Is 

[ t h e  f o r m u l a  f o r  C 2 was  o b t a i n e d  f r o m  c o n d i t i o n  ( 3 . 1 ) ] .  

U s i n g  ( 1 . 9 )  and  ( 3 . 2 )  t o  t r a n s f o r m  t h e  s o l u t i o n  t o  t h e  o r i g i n a l  v a r i a b l e s ,  we o b t a i n  
t h e  e x p r e s s i o n s  

A x (2j+31/4 tin f + y + 1 - 2F ~- t ] 
y ,  ( X ) =  3C2 ] / ~  L (F - -  t) 2 + 2 y 3  a rc tg  ~ a': 

Y<~Y,: ~h = A3x~14z2, u 1 = C~ l/'f, Ax-=/2z( t  - -  z3), 
g 

2A y dt 
Y C 2 ] / ~  x(2J+a)/4 t -- t 3'" 

0 

y > y , :  1] 3 = ~,A2xCZlas 2 -Jr" q (1 - -  ~,), u 2 = C 2 ] / ' ~  A x - t Z / 2 s  ( t  - -  8s),. 
r F(x) ~ ] 

2A z (2j+3)/4 / y dt dt 
Y=c-7-f-r 1 .  i-:-P +~' i=-~ ' F=(1/'q/A)~-=/~' 

.4 _- (6,1c3 Vrl~) '/", 

which give the relations hi(x, y) and ui(x, y) in parametric form. 

4. We will examine swirled fan-shaped jets. In the "weak swirling" approximation, the 
equations for the azimuthal component of velocity w i are separated, while integral relations 
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(2.1), (3.1) remain as before. These conditions must be augmented by an integral relation 
which ensures nonambiguity of the solution of the equations for the azimuthal component. We 
will write the equations for w i and the corresponding boundary conditions in von Mises vari- 
ables : 

2 a ( am~]. (4.1) 
a-T + T %--J' 

m, = m.~, ~.~am~laq = ~,a~'~/a~l at 11 ---- q, a w , / a l  ] = 0 ( 4 . 2 )  

(free jet) at q = O, w z = 0 (semi-infinite jet) at q = O, 

W 2 = 0 at I] = ~]o~. 

To derive the integral relation, we multiply (4.1) by Pi for the free jet and by 02(q + 
b i) for the semi-infinite jet. We then integrate within the corresponding limits and add. 
In subsequent transformations, we use conditions (4.2). In the case of a semi-infinite jet, 
we also use relations (2.6), (2.7) and the additional proposition wi(~, q) = o(~)ui(~, q). 
The validity of the latter is confirmed by the form of the resulting solution. As a conse- 

quence, p,~Jwldq+p2~ J w2dq=L (free jet), p~$]Nw,dll+p~ ~ (q+bo) w2dq=7ll (semi-infinite 
0 q 0 q 

jet). 

We seek the solutions of Eqs. (4.1) in the form w~ ~= ~Gi((F~), ~i ---- (q -F bl)/~ n. Omitting 
the details of the calculations, we write the final expressions for the azimuthal component 
of velocity: wi ---- (2L/J)x -I u~(z, y) (free jet), wi = (2M/E)z-lu~(x, y) (semi-infinite jet). 
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